Humans spend the greater part of the day in a postprandial state. However, the genetic basis of postprandial blood measures is relatively uncharted territory. We examined the genetics of variation in concentrations of postprandial metabolites (t = 150 min) in response to a liquid mixed meal through genome-wide association studies (GWAS) performed in the Netherlands Epidemiology of Obesity (NEO) study (n = 5,705). The metabolite response GWAS identified an association between glucose change and rs10830963:G in the melatonin receptor 1B (β [SE] −0.23 [0.03], P = 2.15 × 10−19). In addition, the ANKRD55 locus led by rs458741:C showed strong associations with extremely large VLDL (XXLVLDL) particle response (XXLVLDL total cholesterol: β [SE] 0.17 [0.03], P = 5.76 × 10−10; XXLVLDL cholesterol ester: β [SE] 0.17 [0.03], P = 9.74 × 10−10), which also revealed strong associations with body composition and diabetes in the UK Biobank (P < 5 × 10−8). Furthermore, the associations between XXLVLDL response and insulinogenic index, HOMA-β, Matsuda insulin sensitivity index, and HbA1c in the NEO study implied the role of chylomicron synthesis in diabetes (with false discovery rate–corrected q <0.05). To conclude, genetic studies of metabolomics change after a liquid meal illuminate novel pathways for glucose and lipid metabolism. Further studies are warranted to corroborate biological pathways of the ANKRD55 locus underlying diabetes.
…. more: Diabetes Journals (ADA) (Quelle/Source)